Inhalt

1	Begriffsdefinitionen2
2	Tabellen TRD-Klasse und Bodenartengruppe stratifiziert 4
3	Eingangsparameter Bestandesbeschreibung Brook9014
4	Indirekte Validierung: pF-Kurven und Ku-Kurven Der untersuchten Böden und PTF
5	Direkte Validierung27

1 BEGRIFFSDEFINITIONEN

pF-Wert

Größe für die Beschreibung der Saugspannung des Wassers [Ig hPa] (AG Bodenkunde 2005).

Feldkapazität (FK)

Ergibt sich aus jener Bodenwassermenge, die ein natürlich gelagerter Boden maximal gegen die Schwerkraft halten kann. Für praktische Anwendung wird konventionell der Wassergehalt bei einem Mittelwert der Saugspannung von pF-Wert = 1,8 für 10 dm Profiltiefe angenommen (AG Bodenkunde 2005).

Nutzbare Feldkapazität (nFK)

Ergibt sich aus dem pflanzenverfügbaren Anteil der FK, d.h. nFK = FK - Totwasser. Der Wassergehalt der nutzbaren Feldkapazität ergibt sich nach deutschen Konventionen bei Saugspannungen zwischen pF 1,8 und 4,2 (AG Bodenkunde 2005).

Totwasser

Wasser, das für die Wurzeln einer Pflanze aufgrund der höheren Saugspannung, mit der es gehalten wird, nicht mehr verfügbar ist. Konventionell ab einem pF-Wert > 4,2 (AG Bodenkunde 2005)

Permanenter Welkepunkt (PWP)

Wird durch den Wassergehalt des Bodens beschrieben, bei dem landwirtschaftliche Nutzpflanzen welken. Konventionell liegt die Saugspannung für alle Kulturpflanzen bei pF = 4,2 (AG Bodenkunde 2005).

Kapillarer Aufstieg

Bezeichnet den Wasseraufstieg aus dem Grund- oder Stauwasser gegen die Schwerkraft bedingt durch Kapillarkräfte. Als Maß für den kapillaren Aufstieg wird die kapillare Aufstiegsrate [mm/d] verwendet. Der kapillare Aufstieg spielt auch bei der Berechnung des pflanzenverfügbaren Wassers eine Rolle als Wasserzufuhr (AG Bodenkunde 2005).

Pedotransferfunktionen

Abschätzungsmodelle, welche u. a. bodenphysikalische Parameter aus Standardmessgrößen (z. B. Korngrößenverteilung, TRD, Humusgehalt (sogenannte "Prädiktoren")) ableiten können. Für die Beschreibung bodenphysikalischer Kennwerte existieren einige solcher Rechenmodelle, welche die Zielgrößen auf unterschiedlichen Wegen schätzen.

Trockenrohdichte (TRD)

Wird durch das Verhältnis zwischen der Trockenmasse einer Bodenprobe in natürlicher Lagerung und ihrem Volumen beschrieben und in g·cm⁻³ oder kg·m⁻³ angegeben (AG Bodenkunde 2005).

Effektive Lagerungsdichte (LD)

Berechnet sich bei Mineralböden aus der Trockenrohdichte und dem Tongehalt *T* in Masse-% (AG Bodenkunde 2005):

LD = TRD + 0,009 * T

Gleichung 1

2 TABELLEN TRD-KLASSE UND BODENARTENGRUPPE **STRATIFIZIERT**

Tabelle 1 TRD-Klasse 1

TRD Klasse		1			
Parameter	PTF	Stich- probengröße	systematischer Fehler	Präzision	Gesamt- genauigkeit
nFK	K2	4	-46,06	16,35	48,88
FK	K2	4	-20,72	9,15	22,65
PWP	K2	4	48,04	27,48	55,34
nFK	S2	4	34,72	41,71	54,27
FK	S2	4	20,44	16,01	25,97
PWP	S2	4	-0,87	20,38	20,39
nFK	T2	4	-5,14	30,00	30,43
FK	T2	4	11,74	14,10	18,35
PWP	T2	4	64,38	30,11	71,08
nFK	V2	4	-7,70	31,37	32,30
FK	V2	4	7,41	9,99	12,44
PWP	V2	4	58,17	42,80	72,22
nFK	W2	4	13,40	40,18	42,36
FK	W2	4	15,70	14,82	21,59
PWP	W2	4	36,99	37,59	52,73
nFK	KA4	4	-38,40	17,89	42,36
FK	KA4	4	-3,88	10,91	11,58
PWP	KA4	4	88,55	35,21	95,29
nFK	KA5	4	-33,48	19,12	38,56
FK	KA5	4	-6,95	10,73	12,78
PWP	KA5	4	65,91	29,90	72,38
nFK	Т	4	-10,09	28,53	30,26
PWP	Т	4	55,96	31,97	64,45
FK	Т	4	5,67	12,56	13,78
nFK	TK	4	-16,28	20,54	26,21
PWP	TK	4	49,95	30,12	58,33
FK	TK	4	0,49	13,38	13,39

TRD Klasse		2			
		Stich-	systematischer		Gesamt-
Parameter	PTF	probengröße	Fehler	Präzision	genauigkeit
nFK	K2	32	-26,68	24,73	36,37
FK	K2	32	-3,50	16,80	17,16
PWP	K2	32	71,46	108,63	130,02
nFK	S2	32	28,18	28,68	40,21
FK	S2	32	16,22	19,99	25,74
PWP	S2	32	12,73	54,06	55,54
nFK	T2	32	6,84	24,91	25,83
FK	T2	32	13,12	17,02	21,49
PWP	T2	32	41,40	105,53	113,36
nFK	V2	32	-1,93	27,11	27,18
FK	V2	32	11,81	22,87	25,74
PWP	V2	32	67,13	101,97	122,08
nFK	W2	32	21,91	31,89	38,69
FK	W2	32	24,53	22,78	33,48
PWP	W2	32	47,41	100,05	110,72
nFK	KA4	32	-18,99	24,20	30,76
FK	KA4	32	9,53	21,92	23,90
PWP	KA4	32	102,90	129,02	165,03
nFK	KA5	32	-16,71	24,50	29,66
FK	KA5	32	7,28	24,90	25,94
PWP	KA5	32	90,98	114,75	146,45
nFK	Т	32	0,16	25,68	25,68
PWP	Т	32	78,94	83,39	114,83
FK	Т	32	15,56	21,87	26,84
nFK	TK	32	2,94	25,42	25,59
PWP	TK	32	97,87	110,80	147,83
FK	TK	32	19,46	25,52	32,09

Tabelle 2 TRD-Klasse 2

TRD Klasse		3			
_		Stich-	systematischer		Gesamt-
Parameter	PTF	probengröße	Fehler	Präzision	genauigkeit
nFK	K2	59	6,23	47,73	48,13
FK	K2	59	17,17	24,30	29,75
PWP	K2	59	80,75	96,17	125,58
nFK	S2	59	40,99	64,83	76,70
FK	S2	59	17,18	19,64	26,09
PWP	S2	59	31,09	85,81	91,26
nFK	T2	59	34,43	49,39	60,20
FK	T2	59	22,89	21,57	31,45
PWP	T2	59	17,00	91,68	93,24
nFK	V2	59	31,18	55,92	64,02
FK	V2	59	33,39	39,40	51,65
PWP	V2	59	77,20	108,14	132,86
nFK	W2	59	37,01	55,66	66,84
FK	W2	59	26,73	28,86	39,34
PWP	W2	59	27,68	95,59	99,52
nFK	KA4	59	11,04	44,01	45,37
FK	KA4	59	22,57	24,71	33,47
PWP	KA4	59	87,24	120,99	149,16
nFK	KA5	59	3,67	46,03	46,18
FK	KA5	59	15,91	23,60	28,47
PWP	KA5	59	98,53	114,32	150,93
nFK	Т	59	20,39	45,17	49,56
PWP	Т	59	113,51	119,13	164,55
FK	Т	59	31,55	34,20	46,53
nFK	TK	59	22,25	51,55	56,14
PWP	ТК	59	82.54	102.52	131.62

Tabelle 3 TRD-Klasse 3

Tabelle 4 TRD-Klasse 4

TRD Klasse		4			
		Stich-	systematischer		Gesamt-
Parameter	PTF	probengröße	Fehler	Präzision	genauigkeit
nFK	K2	92	10,82	37,49	39,02
FK	K2	92	17,54	36,53	40,52
PWP	K2	92	52,23	107,47	119,49
nFK	S2	92	44,54	52,35	68,74
FK	S2	92	8,75	31,95	33,12
PWP	S2	92	-4,91	85,10	85,25
nFK	T2	92	30,52	42,59	52,40
FK	T2	92	14,05	33,88	36,68
PWP	T2	92	4,76	83,58	83,71
nFK	V2	92	26,67	49,98	56,65
FK	V2	92	22,94	42,50	48,30
PWP	V2	92	37,84	98,90	105,89
nFK	W2	92	23,16	39,30	45,62
FK	W2	92	12,43	33,74	35,95
PWP	W2	92	8,69	80,22	80,69
nFK	KA4	90	-1,12	33,49	33,50
FK	KA4	90	10,25	34,25	35,75
PWP	KA4	90	48,13	111,71	121,64
nFK	KA5	92	1,13	28,44	28,46
FK	KA5	92	10,15	33,99	35,47
PWP	KA5	92	50,62	112,07	122,97
nFK	Т	92	8,28	42,36	43,16
PWP	Т	92	69,29	121,16	139,57
FK	Т	92	17,39	38,72	42,45
nFK	TK	92	9,71	42,73	43,82
PWP	TK	92	67,95	124,17	141,54
FK	TK	92	17,35	39,62	43,26

Tabelle 5 TRD-Klasse 5

TRD Klasse		5			
		Stich-	systematischer		Gesamt-
Parameter	PTF	probengröße	Fehler	Präzision	genauigkeit
nFK	K2	48	37,58	52,93	64,91
FK	K2	48	14,00	15,74	21,06
PWP	K2	48	16,96	61,39	63,69
nFK	S2	48	55,54	57,59	80,00
FK	S2	48	-3,01	13,64	13,97
PWP	S2	48	-30,86	39,41	50,05
nFK	T2	48	41,23	45,86	61,67
FK	T2	48	0,58	13,13	13,14
PWP	T2	48	-17,75	52,34	55,27
nFK	V2	48	30,69	47,31	56,39
FK	V2	48	8,19	26,66	27,89
PWP	V2	48	4,57	56,55	56,74
nFK	W2	48	18,21	33,33	37,98
FK	W2	48	1,49	14,11	14,19
PWP	W2	48	-0,05	57,90	57,90
nFK	KA4	47	9,43	45,98	46,93
FK	KA4	47	1,01	13,97	14,00
PWP	KA4	47	11,74	59,09	60,24
nFK	KA5	48	14,99	48,71	50,97
FK	KA5	48	1,56	15,95	16,02
PWP	KA5	48	11,07	59,63	60,65
nFK	Т	48	6,30	32,29	32,90
PWP	Т	48	21,04	63,62	67,01
FK	Т	48	2,67	14,97	15,20
nFK	ΤK	48	5,91	45,75	46,13
PWP	ΤK	48	33,76	79,02	85,93
FK	ΤK	48	7,47	20,03	21,38

Bodenartengruppe		1_Ss			
		Stich-	systematischer		Gesamt-
Parameter	PTF	probengröße	Fehler	Präzision	genauigkeit
nFK	K2	21	41,40	51,79	66,30
FK	K2	21	43,63	36,71	57,02
PWP	K2	21	111,62	116,23	161,14
nFK	S2	21	-16,24	29,77	33,91
FK	S2	21	1,70	26,33	26,39
PWP	S2	21	125,50	119,18	173,07
nFK	T2	21	63,84	50,25	81,25
FK	T2	21	35,49	29,42	46,10
PWP	T2	21	-64,98	23,35	69,05
nFK	V2	21	76,26	78,83	109,68
FK	V2	21	68,05	60,70	91,19
PWP	V2	21	92,63	128,31	158,25
nFK	W2	21	63,83	50,21	81,21
FK	W2	21	39,73	36,94	54,25
PWP	W2	21	-37,96	52,60	64,86
nFK	KA4	21	27,04	42,29	50,19
FK	KA4	21	19,69	29,07	35,12
PWP	KA4	21	24,05	65,56	69,83
nFK	KA5	21	-30,29	22,17	37,53
FK	KA5	21	-11,69	23,70	26,43
PWP	KA5	21	116,98	114,90	163,98
nFK	Т	21	62,78	58,90	86,09
PWP	Т	21	185,10	143,95	234,48
FK	Т	21	72,06	39,39	82,12
nFK	ΤK	21	61,56	51,99	80,58
PWP	ΤK	21	183,33	169,61	249,75
FK	ΤK	21	71.54	37.07	80.57

Tabelle 6 Bodenartengruppe 1 Reinsande

Tabelle 7	Bodenartengruppe 2 Sande
-----------	--------------------------

Bodenartengruppe		2_S			
		Stich-	systematischer		Gesamt-
Parameter	PTF	probengröße	Fehler	Präzision	genauigkeit
nFK	K2	53	20,37	39,50	44,44
FK	K2	53	19,46	24,22	31,07
PWP	K2	53	52,22	72,26	89,16
nFK	S2	53	16,09	29,65	33,74
FK	S2	53	8,62	23,35	24,89
PWP	S2	53	18,16	60,61	63,28
nFK	T2	53	36,46	38,91	53,33
FK	T2	53	15,42	23,64	28,23
PWP	T2	53	-21,26	56,62	60,48
nFK	V2	53	45,79	41,89	62,06
FK	V2	53	36,02	34,38	49,79
PWP	V2	53	46,43	82,95	95,06
nFK	W2	53	36,46	34,68	50,31
FK	W2	53	21,16	31,19	37,69
PWP	W2	53	0,32	62,87	62,87
nFK	KA4	53	17,21	31,55	35,94
FK	KA4	53	22,18	29,53	36,93
PWP	KA4	53	81,43	109,79	136,69
nFK	KA5	53	18,89	33,77	38,69
FK	KA5	53	21,65	28,41	35,72
PWP	KA5	53	70,12	95,26	118,28
nFK	Т	53	12,56	29,23	31,81
PWP	Т	53	94,24	98,88	136,60
FK	Т	53	24,50	30,85	39,39
nFK	ТК	53	13,45	33,57	36,16
PWP	ТК	53	90,45	102,63	136,80
FK	ТК	53	22,76	25,90	34,48

Bodenartengruppe		3_L			
		Stich-	systematischer		Gesamt-
Parameter	PTF	probengröße	Fehler	Präzision	genauigkeit
nFK	K2	93	0,43	47,39	47,40
FK	K2	93	7,21	32,72	33,50
PWP	K2	93	58,26	122,51	135,65
nFK	S2	93	56,34	45,84	72,64
FK	S2	93	11,55	32,49	34,48
PWP	S2	93	-14,22	65,94	67,46
nFK	T2	93	20,56	37,72	42,96
FK	T2	93	10,70	31,98	33,72
PWP	T2	93	37,63	107,51	113,91
nFK	V2	93	7,86	33,54	34,45
FK	V2	93	11,62	32,93	34,92
PWP	V2	93	52,81	115,43	126,93
nFK	W2	93	12,13	31,92	34,15
FK	W2	93	12,30	32,02	34,30
PWP	W2	93	45,11	106,40	115,57
nFK	KA4	93	-10,72	35,73	37,30
FK	KA4	93	8,04	31,87	32,87
PWP	KA4	93	74,28	138,18	156,88
nFK	KA5	93	-3,13	37,92	38,05
FK	KA5	93	9,38	32,21	33,54
PWP	KA5	93	66,50	132,13	147,92
nFK	Т	93	-0,69	29,11	29,12
PWP	Т	93	55,74	116,92	129,53
FK	Т	93	8,57	30,62	31,79
nFK	ΤK	93	2,90	40,56	40,66
PWP	TK	93	55.60	105.30	119.08

Tabelle 8 Bodenartengruppe 3 Lehm

Tabelle 9 Bodenartengruppe 4 Schluff

Bodenartengruppe		4_U			
		Stich-	systematischer		Gesamt-
Parameter	PTF	probengröße	Fehler	Präzision	genauigkeit
nFK	K2	41	8,54	49,15	49,89
FK	K2	41	8,62	11,48	14,36
PWP	K2	41	35,28	46,87	58,66
nFK	S2	41	43,41	61,88	75,59
FK	S2	41	11,53	10,35	15,49
PWP	S2	41	-23,09	25,46	34,38
nFK	T2	41	14,29	51,79	53,73
FK	T2	41	10,24	10,71	14,82
PWP	T2	41	30,59	46,90	55,99
nFK	V2	41	12,18	54,15	55,50
FK	V2	41	6,69	11,49	13,30
PWP	V2	41	21,10	49,02	53,36
nFK	W2	41	19,81	58,77	62,02
FK	W2	41	7,75	9,03	11,90
PWP	W2	41	9,40	46,73	47,66
nFK	KA4	41	4,82	46,97	47,22
FK	KA4	41	2,40	9,54	9,84
PWP	KA4	41	22,11	44,99	50,13
nFK	KA5	41	7,51	49,08	49,65
FK	KA5	41	5,05	10,01	11,21
PWP	KA5	41	25,79	45,79	52,55
nFK	Т	41	-5,04	41,91	42,22
PWP	Т	41	59,10	51,20	78,19
FK	Т	41	8,47	9,06	12,40
nFK	ΤK	41	-0,26	51,64	51,64
PWP	ΤK	41	46,32	56,28	72,89
FK	ΤK	41	6,69	10,37	12,34

Tabelle 10 Bodenartengruppe 5 Ton

Bodenartengruppe		5_T			
		Stich-	systematischer		Gesamt-
Parameter	PTF	probengröße	Fehler	Präzision	genauigkeit
nFK	K2	27	-7,82	29,61	30,62
FK	K2	27	4,87	11,93	12,89
PWP	K2	27	32,82	74,05	81,00
nFK	S2	27	99,69	51,76	112,32
FK	S2	27	8,74	13,32	15,93
PWP	S2	27	-37,93	35,24	51,77
nFK	T2	27	46,14	38,01	59,78
FK	T2	27	5,92	12,83	14,13
PWP	T2	27	-3,38	59,98	60,08
nFK	V2	27	15,37	27,80	31,77
FK	V2	27	6,95	13,17	14,89
PWP	V2	27	16,80	62,01	64,24
nFK	W2	27	27,02	28,14	39,02
FK	W2	27	8,20	12,40	14,87
PWP	W2	27	10,92	62,35	63,30
nFK	KA4	24	-18,64	23,90	30,31
FK	KA4	24	6,49	15,87	17,15
PWP	KA4	24	43,43	88,92	98,96
nFK	KA5	27	-0,39	22,92	22,92
FK	KA5	27	6,34	13,44	14,86
PWP	KA5	27	28,22	73,81	79,02
nFK	Т	27	19,24	29,34	35,09
PWP	Т	27	12,71	59,13	60,48
FK	Т	27	5,72	11,34	12,70
nFK	ΤK	27	9,40	26,20	27,84
PWP	ΤK	27	13,32	61,28	62,71
FK	ΤK	27	2,70	12,98	13,25

3 EINGANGSPARAMETER BESTANDESBESCHREIBUNG BROOK90

Parameter	Beschreibung	Buche	Eiche	Fichte	Kiefer
ESLOPE	Neigung für Evapotranspiration und Schneeschmelze, Grad	0,0	0,0	0,0	0,0
ASPECT	Blickwinkel, Grad durch Osten von Norden	0,0	0,0	0,0	0,0
ALB	Albedo ohne Schnee	0,18	0,18	0,14	0,14
ALBSN	Albedo mit Schneeauflage	0,23	0,23	0,14	0,14
C1	Eintrag von Solarstrahlung vs. Sonnenscheindauer	0,25	0,25	0,25	0,25
C2	Neigung von Solarstrahlung vs. Sonnenscheindauer	0,50	0,50	0,20	0,50
C3	Korrekturfaktor langwellig für bedeckten Himmel	0,20	0,20	0,20	0,20
WNDRAT	Verhältnis von Windgeschwindigkeit tagsüber/nachts	0,30	0,30	0,30	0,30
FETCH	Wetterstation Windlauflänge, m	5000	5000	5000	5000
ZOW	Wetterstation Rauhigkeitsparameter, m	0,005	0,005	0,005	0,005
ZW	Wetterstation Windmesshöhe, m	10,0	10,0	10,0	10,0
LWIDTH	Blattbreite, m	0,050	0,100	0,001	0,004
Z0G	Rauhigkeit Bodenoberfläche, m	0,003	0,003	0,003	0,003
ZOS	Rauhigkeit Schneedecke, m	0,001	0,001	0,001	0,001
LPC	minimaler LAI der geschlossenes Kronendach definiert	4,000	4,000	4,000	4,000
CZS	Verhältnis Rauhigkeit/Höhe für glatte Kronendächer (geschlossen)	0,130	0,130	0,130	0,130
CZR	Verhältnis Rauhigkeit/Höhe für rauhe Kronendächer (geschlossen)	0,050	0,050	0,050	0,050
HS	Höhe unterhalb unter Anwendung von CZS, m	1,000	1,000	1,000	1,000
HR	Höhe oberhalb unter Anwendung von CZR, m	10,000	10,000	10,000	10,000
ZMINH	ZA minus Höhe, Rferenzhöhe über dem Kronendach, m	2,000	2,000	2,000	2,000
RHOTP	Verhältnis gesamte Blattfläche/projizierte Fläche	2,000	2,000	2,500	2,500
NN	Wind/Diffusitivität Absorbtionskoeffizient	2,500	2,500	2,500	2,500
RSTEMP	Grundtemperatur für den Übergang von Schnee zu	-0,50	-0,50	-0,50	-0,50

Tabelle 11	Brook90 Eingangsparameter zur	r Beschreibung d	er Bestände
------------	-------------------------------	------------------	-------------

ZEBRIS GIS und Consulting / ESMM 07.12.2009

	Regen, øC				
DURATN	(1 bis 12) durchschnittliche Dauer des täglichen Niederschlags pro Monat, hr	4,0	4,0	4,0	4,0
INTR	Inizial zurückgehaltener Regen (Interzeption), mm	0	0	0	0
INTS	Inizial zurückgehaltener Schnee (Interzeption), mm	0	0	0	0
FRINTL	Zurückgehaltener Anteil Regen pro Einheit LAI	0,120	0,120	0,120	0,120
FSINTS	Zurückgehaltener Anteil Schnee pro Einheit LAI	0,080	0,080	0,080	0,080
FRINTS	Zurückgehaltener Anteil Regen pro Einheit SAI	0,120	0,120	0,120	0,120
FSINTS	Zurückgehaltener Anteil Schnee pro Einheit SAI	0,080	0,080	0,080	0,080
CINTRL	Maximaler Interzeptionsspeicher von Regen pro Einheit LAI, mm	0,150	0,150	0,300	0,300
CINTRS	Maximaler Interzeptionsspeicher von Regen pro Einheit SAI, mm	0,150	0,150	0,500	0,500
CINTSL	Maximaler Interzeptionsspeicher von Schnee pro Einheit LAI, mm	0,600	0,600	0,600	0,600
CINTSS	Maximaler Interzeptionsspeicher von Schnee pro Einheit SAI, mm	0,600	0,600	0,600	0,600
MELFAC	Grad Faktor für Tagesschmelze auf offenem Terrain, MJ m-2 d-1 K-1	1,500	1,500	1,500	1,500
CCFAC	Faktor Kältegehalt, MJ m-2 d-1 K-1	0,300	0,300	0,300	0,300
LAIMLT	Parameter für die Abhängigkeit der Schneeschmelze vom LAI, dimensionslos	0,200	0,200	0,200	0,200
SAIMLT	Parameter für die Abhängigkeit der Schneeschmelze vom SAI, dimensionslos	0,500	0,500	0,500	0,500
GRDMLT	Rate Schneeschmelze der Schneedecke, mm/d	0,350	0,350	0,350	0,350
MAXLQF	maximaler Flüssigwasseranteil von Schnee, dimensionslos	0,050	0,050	0,050	0,050
KSNVP	Multiplikator um Schneeevaporationsproblem zu lösen	0,300	0,300	0,300	0,300
SNODEN	Schneedichte, mm/mm	0,300	0,300	0,300	0,300
GLMAX	Maximale Blattleitfähigkeit, m/s	0,0045	0,0045	0,0035	0,0045
CR	Licht-Absorbtionskoeffizient für projizierten LAI + SAI	0,5000	0,5000	0,5000	0,5000
GLMIN	Minimale Blattleitfähigkeit, m/s	0,0009	0,0009	0,0001	0,0001
RM	Maximale Solarstrahlung, bei welcher FR = 1, W/m2	1000	1000	1000	1000
R5	Solarstrahlung bei welcher Leitfähigkeit halbiert ist, W/m2	100	100	100	100
CVPD	VPD bei der Leitfähigkeit halbiert ist, kPa	2,0	2,0	2,0	2,0

TI	Mittlere Tagestemperatur unterhalb, bei der Stomata geschlossen sind, Grad C°	0	0	0	0
T1	niedrigste Tagesmitteltemperatur bei welche Stomata nicht Temperaturlimitiert, Grad C°	10,0	10,0	10,0	10,0
T2	höchste Tagesmitteltemperatur bei welche Stomata nicht Temperaturlimitiert, Grad C°	30,0	30,0	30,0	30,0
ТН	Mittlere Tagestemperatur oberhalb, bei der Stomata geschlossen sind, Grad C°	40,0	40,0	40,0	40,0
MXKPL	Maximale Pflanzenleitfähigkeit, (mm/d)/MPa	8,00	8,00	8,00	8,00
MXRTLN	Maximale Wurzellänge pro Flächeneinheit, m/m2	3000,0	2500,0	1000,0	1000,0
inirlen	Iniziale wasserabsorbierende Wurzellänge pro Flächeneinheit [m /m²]	10,0	10,0	10,0	10,0
inirdep	Iniziale Wurzeltiefe [m]	0,250	0,250	0,250	0,250
rgrorate	Vertikale Wurzelwachstumsrate [m/ a]	0,033	0,033	0,033	0,050
rgroper	Zeitspanne des gesamten Wurzelwachstums	0,000	0,000	0,000	0,000
FXYLEM	Anteil des Pflanzenwiederstandes im Xylem	0,500	0,500	0,500	0,500
PSICR	Minimales Wasserpotenzial der Blätter, MPa	-2,000	-2,000	-2,000	-2,000
RTRAD	Durchschnittlicher Wurzelradius, mm	0,350	0,350	0,350	0,350
NOOUTF%	1 wenn kein Ausfluss aus Wurzeln erlaubt, andernfalls 0	1	1	1	1
NLAYER%	Zahl der benutzten Bodenschichten im Modell, <= ML%	11	11	11	11
NMat%	Zahl der im Modell benutzten Materialien, <= ML%	6	6	6	6
ILAYER%	Zahl der Schichten über die Infiltration gestört wird	1	1	1	1
QLAYER%	Zahl der Bodenschichten um SRFL zu berechnen, 0 um SRFL zu unterdrücken	0	0	0	0
IMODEL%	Parametrisierung: 0 Clapp/Hornberger 1 Mualem/van Genuchten	1	1	1	1

Abbildung 1 BROOK90 Eingangsparameter LAI 2002/2003 der Baumarten

4 INDIREKTE VALIDIERUNG: pF-KURVEN UND Ku-KURVEN DER UNTERSUCHTEN BÖDEN UND PTF

Abbildung 2 pF-Kurven und Ku-Kurven für den Sandboden (gemessen)

Abbildung 3 pF-Kurven und Ku-Kurven für den Schluffboden (gemessen)

Abbildung 4 pF-Kurven und Ku-Kurven für den Tonboden (gemessen)

Abbildung 5 pF-Kurven und Ku-Kurven für den Schichtboden (gemessen)

Abbildung 6 pF-Kurven und Ku-Kurven für den Skelettboden (gemessen)

Abbildung 7 pF-Kurven und Ku-Kurven für den Sandboden (Wösten KGA)

Abbildung 8 pF-Kurven und Ku-Kurven für den Schluffboden (Wösten KGA)

Abbildung 9 pF-Kurven und Ku-Kurven für den Tonboden (*Wösten KGA*)

Abbildung 10 pF-Kurven und Ku-Kurven für den Schichtboden (Wösten KGA)

Abbildung 11 pF-Kurven und Ku-Kurven für den Skelettboden (Wösten KGA)

Abbildung 12 pF-Kurven und Ku-Kurven für den Sandboden (Schaap KGA + TRD)

Abbildung 13 pF-Kurven und Ku-Kurven für den Schluffboden (Schaap KGA + TRD)

Abbildung 14 pF-Kurven und Ku-Kurven für den Tonboden (Schaap KGA + TRD)

Abbildung 15 pF-Kurven und Ku-Kurven für den Schichtboden (Schaap KGA + TRD)

Abbildung 16 pF-Kurven und Ku-Kurven für denSkelettboden (Schaap KGA + TRD)

Abbildung 17 pF-Kurven und Ku-Kurven für den Sandboden (Teepe KGA vG)

Abbildung 18 pF-Kurven und Ku-Kurven für den Schluffboden (Teepe KGA vG)

Abbildung 19 pF-Kurven und Ku-Kurven für den Tonboden (Teepe KGA vG)

Abbildung 20 pF-Kurven und Ku-Kurven für denSchichtboden (Teepe KGA vG)

Abbildung 21 pF-Kurven und Ku-Kurven für den Skelettboden (Teepe KGA vG)

Abbildung 22 pF-Kurven und Ku-Kurven für den Sandboden (AG Boden KA5)

Abbildung 23 pF-Kurven und Ku-Kurven für den Schluffboden (AG Boden KA5)

Abbildung 24 pF-Kurven und Ku-Kurven für den Tonboden (AG Boden KA5)

Abbildung 25 pF-Kurven und Ku-Kurven für den Schichtboden (AG Boden KA5)

Abbildung 26 pF-Kurven und Ku-Kurven für den Skelettboden (AG Boden KA5)

5 DIREKTE VALIDIERUNG

Abbildung 28 Verlauf der mittels Pedotransferfunktionen (PTF) geschätzten pF-Kurven (gemittelt über alle Bodenhorizonte der jeweiligen Bodenartengruppen) im Vergleich zu den Messwerten der zur Validierung der PTF herangezogenen Bodenhorizonte: Schluffböden und Lehmböden.

Abbildung 29 Verlauf der mittels Pedotransferfunktionen (PTF) geschätzten pF-Kurven (gemittelt über alle Bodenhorizonte der jeweiligen Bodenartengruppen) im Vergleich zu den Messwerten der zur Validierung der PTF herangezogenen Bodenhorizonte: Tonböden.